Three DNA polymerases, recruited by different mechanisms, carry out NER repair synthesis in human cells.
نویسندگان
چکیده
Nucleotide excision repair (NER) is the most versatile DNA repair system that deals with the major UV photoproducts in DNA, as well as many other DNA adducts. The early steps of NER are well understood, whereas the later steps of repair synthesis and ligation are not. In particular, which polymerases are definitely involved in repair synthesis and how they are recruited to the damaged sites has not yet been established. We report that, in human fibroblasts, approximately half of the repair synthesis requires both pol kappa and pol delta, and both polymerases can be recovered in the same repair complexes. Pol kappa is recruited to repair sites by ubiquitinated PCNA and XRCC1 and pol delta by the classical replication factor complex RFC1-RFC, together with a polymerase accessory factor, p66, and unmodified PCNA. The remaining repair synthesis is dependent on pol epsilon, recruitment of which is dependent on the alternative clamp loader CTF18-RFC.
منابع مشابه
Sealing of chromosomal DNA nicks during nucleotide excision repair requires XRCC1 and DNA ligase III alpha in a cell-cycle-specific manner.
Impaired gap filling and sealing of chromosomal DNA in nucleotide excision repair (NER) leads to genome instability. XRCC1-DNA ligase IIIalpha (XRCC1-Lig3) plays a central role in the repair of DNA single-strand breaks but has never been implicated in NER. Here we show that XRCC1-Lig3 is indispensable for ligation of NER-induced breaks and repair of UV lesions in quiescent cells. Furthermore, o...
متن کاملNickel Increases Chromosomal Abnormalities by Interfering with the Initiation of DNA Repair Pathways
Background: Nickel is a carcinogenic, heavy metal released through industrial activities and via natural resources. It is able to cause DNA damages by reducing the efficiency of DNA repair mechanisms. However, the exact time point at which it is able to interfere with these mechanisms is not yet clearly understood. Methods: To find the most nickel-vulnerable time of repair mechanisms, human de...
متن کاملDNA repair and recovery of RNA synthesis following exposure to ultraviolet light are delayed in long genes
The kinetics of DNA repair and RNA synthesis recovery in human cells following UV-irradiation were assessed using nascent RNA Bru-seq and quantitative long PCR. It was found that UV light inhibited transcription elongation and that recovery of RNA synthesis occurred as a wave in the 5'-3' direction with slow recovery and TC-NER at the 3' end of long genes. RNA synthesis resumed fully at the 3'-...
متن کاملAccessibility of DNA polymerases to repair synthesis during nucleotide excision repair in yeast cell-free extracts.
Nucleotide excision repair (NER) removes a variety of DNA lesions. Using a yeast cell-free repair system, we have analyzed the repair synthesis step of NER. NER was proficient in yeast mutant cell-free extracts lacking DNA polymerases (Pol) beta, zeta or eta. Base excision repair was also proficient without Polbeta. Repair synthesis of NER was not affected by thermal inactivation of the tempera...
متن کاملDatabases and Bioinformatics Tools for the Study of DNA Repair
DNA is continuously exposed to many different damaging agents such as environmental chemicals, UV light, ionizing radiation, and reactive cellular metabolites. DNA lesions can result in different phenotypical consequences ranging from a number of diseases, including cancer, to cellular malfunction, cell death, or aging. To counteract the deleterious effects of DNA damage, cells have developed v...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular cell
دوره 37 5 شماره
صفحات -
تاریخ انتشار 2010